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The dynamical behavior of two-dimensional arrays of slider blocks is con- 
sidered. The blocks are pulled across a frictional surface by a constant-velocity 
driver; the blocks are connected to the driver and to each other by springs. Only 
one block is allowed to slip at a time and its displacement can be obtained 
analytically; the system is deterministic with no stochastic inputs. Studies of 
a pair of slider blocks show that they exibit periodic, limit-cycle, or choatic 
behavior depending upon parameter values and initial conditions. Studies of 
large, two-dimensional arrays of blocks show self-organized criticality. Positive 
Lyapunov exponents are found that depend upon the stiffness and size of the 
array. 
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1. I N T R O D U C T I O N  

Since chaot ic  behav ior  of  de terminis t ic  systems was first d iscovered by 
Loren tz  (I) a large n u m b e r  of  p rob lems  have been shown to exhibi t  deter-  
minis t ic  choas.  Chao t i c  behav io r  has been found for bo th  i terat ive maps  
and  sets of  differential  equat ions .  However ,  studies of chaot ic  behav io r  
have genera l ly  been res t r ic ted to low-order  systems. F o r  this reason the 
n u m b e r  of  app l ica t ions  in con t inuum mechanics  has been qui te  l imited.  

As an a p p r o a c h  to large in tera t ive  systems, Bak et al. (2~ p r o p o s e d  a 
s imple ce l lu l a r - au toma ta  mode l  for self-organized crit icality.  Par t ic les  were 
r a n d o m l y  a d d e d  to a square  grid of  boxes,  and  when a box had  four  
part icles ,  they were red is t r ibu ted  to the four ad jacent  boxes. If  after a 
red i s t r ibu t ion  f rom a box any  of  the ad jacen t  boxes  had  four or  more  
part icles,  fur ther  red is t r ibu t ions  were required.  O n  average,  all par t ic les  
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added were lost from the boundaries of the grid. The behavior of the 
system was characterized by the statistical frequency-size distribution of 
events, which was found to be a power-law (fractal) relation. 

In this paper we will consider a slider-block model that exhibits 
chaotic behavior at low order and self-organized criticality at high order. 
A multiple slider-block model was introduced by Burridge and Knopoff (3) 
as an analog for earthquakes. A constant-velocity driver was attached to 
one or more blocks by springs. The blocks interact with a surface resulting 
in a frictional resistance; if the dynamic friction is less than the static 
friction or if a velocity-weakening friction law is used, stick-slip behavior is 
observed. Huang and Turcotte (4) showed that a pair of slider blocks often 
behaved in a chaotic manner as long as the system was asymmetric, i.e., 
the blocks had different masses. The period-doubling route to chaos was 
observed and it satisfied the Feigenbaum relation. 

Carlson and Langer (5) considered a linear array of slider blocks; each 
block was attached by springs to a constant-velocity driver and to its 
nearest neighbors. They found that the statistical frequency-size distribu- 
tion of small events was a power law (fractal), but an anomalously large 
number of events occurred that included all blocks. They suggested that 
their system behaved chaotically and exhibited self-organized criticality. 
Ito and Matsuzaki (6) discussed the strong similarities between cellular- 
automata and slider-block models. Nakanishi (7) modified the multiple- 
slider-block model so that only the block or blocks that are initially 
unstable are allowed to slide. The transfer of stress may destabilize adjacent 
blocks and these are allowed to slide subsequently. A modification of this 
model was applied to a two-dimensional array of blocks by Brown et aL ~8) 

In this paper we will consider a generalized slider-block model which 
combines various aspects of previous models. We will study both low-order 
and high-order systems and will determine whether the behavior is chaotic. 

2. GENERAL M O D E L  

Our generalized dynamical system consists of N blocks that are pulled 
across a frictional surface by a driver moving at a constant velocity v. The 
blocks are loaded in the x direction and there are no displacements in 
the y direction. Block i with mass m i is connected to the driver by a spring; 
the spring constant is k ,  and its extension is xi. Each pair of blocks is 
connected to each other with a spring; the spring constant is k o. and its 
extension is x j - x i .  The motion of block i is reatarded by the frictional 
force F~. A simplified version consisting of four blocks is illustrated in 
Fig. 1. We will assume that the velocity of the driver is small, so we can 
neglect the displacement of the driver relative to the surface during a slip 
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event. We also assume a static-dynamic friction law. Each block sticks 
until the elastic force applied to it is ~> the static friction F~i. It then slips 
until its velocity relative to the surface is equal to 0. The dynamic friction 
during the slip is Fei = ~F~, where the parameter ~ is the ratio of dynamic 
to static friction; stick-slip behavior requires that ~ < 1. 

The failure condition for block i is 

ki~x ~ - ~ ko(x j -  x,) >~ Fs~ (2.1) 

where the left-hand side is the sum of the forces transmitted to the block 
by the driving and connecting springs. Slip commences when condition 
(2.l) is violated. The equation of the motion of block i during slip is 

m~ 2~ = - k i i x  i -t- 2 ku(xJ - xi) -37 Fa~ (2.2) 
j r  i 

Let m~ = 7~m; k d = ~uk and F~ = fl~F, where c~ d is a stiffness parameter and 
represents the relative strength of the coupling and driver springs. We 
introduce dimensionless variables Xi=xik/F, r=t(k/rn) ~/2, and denote 
0i = Z ~ 1  c~u. The dimensionless failure condition for block i is 

X, Oi- ~ c~uXj>>- fli (2.3) 

The dimensionless equation of motion for block i is 

~ + X~O~- ~ auX j = ~fl~ (2.4) 

Let (a j, a2,..., aN) be a solution of the system of N linear equations 

a~Oe- ~ euc~j = fig, for i =  1 ..... N (2.5) 
j ~ i  

Let C =  (cu) be the matrix of the coefficients of the system (2.5), where 
cu= -c~ U for i C j  and c~=O~. We will prove that det(C):~0 if we have 
nonzero loading spring coefficients ~i- It follows from this statement 
that the linear system (2.5) always has a unique solution. Assume that 
de t (C)=0 .  We consider rows of C as vectors v i = ( c l ,  c~2 ..... cm). The 
statement that C is degenerate is equivalent to the statement that there is 
a nonzero linear combination of v~ equal to 0, i.e., there are N real numbers 
d,., not all equal to 0, such that ~N=~d~vi=0. Thus, for the matrix 
coefficients of C we have 

N 

d~cu = 0 for j = 1,..., N (2.6) 
i - - 1  
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Fig. 1. Illustration of our generalized slider-block model. A constant-velocity (v) driver pulls 
blocks of mass ml across a surface. The masses are attached to the driver by springs with 
spring constants kli and to each other by springs with spring constants k~. The motion is 
retarded by the frictional forces Fi. 

Let i I be such a number  that  [dil I =maxe=l,... ,  N Ldil. We can assume that  
dil > 0, otherwise we can change the sign of all de. We take j = i I in (2.6), 
put  the te rm in the sum with i = il separately,  and use the condi t ion that  
e~ = ~# and the definition of co., 

dil~ i l+d i l  ~] ~ i i i -  ~.~ di~ + ~ (di,-d~)~eil (2.7) 
i~il iv~il i~il 

In (2.7) the first te rm on the right side is positive and the sum is non-  
negative, so tha t  (2.7) is positive, but  it must  be equal  to 0, so we have a 
contradic t ion and  our  assumpt ion  is wrong  and we always have a unique 
solution. 

N o w  we will p rove  tha t  the evolut ion of our  system does not  depend 
on the dynamic  friction. Tak ing  r = 0, we can write (2.4) as 

Y i ~ o + X m O i -  Z e~X#o = 0  (2.8) 
jvai 

The failure condit ions are still (2.3). We introduce a linear change of 
variables 

Xi = ae + (1 - ~)(Xi0 - ai) (2.9) 

F r o m  (2.8) and (2.9) it follows that  

X i -- a i 
Xio = ai + ~ (2.10) 

1 - 4  
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and 

~ i 2 i / ( 1  - ~ )  + x i o , / ( 1  - ~ )  - (1  - ~) 

+a,Oi[1-1 / (1- -~)] - (~  ~aj)  (2.1l) 

Since aeOi-~j~ijaj=fli ,  we multiply (2.11) by ( 1 - r  and have the 
following equations for X i {we use that [ 1 -  1 / ( 1 -  ~ ) ] ( 1 -  r  -~} :  

7~2~ + X~O,-(~  c%Xs)-~fl~=O (2.12) 

which is equivalent to (2.4). Substitution of (2.10) into (2.3) gives the same 
failure criteria for Xi as for X~o. So the linear change of variables transfers 
the system with zero dynamic friction into the system with any other ratio 
of dynamic to static friction; therefore we will take ~ = 0 in the results 
presented below. It is interesting to note that when ~ = 0 no energy is lost 
through frictional dissipation and the average force exerted on the 
constant-velocity driver is zero. At some times it is necessary to pull the 
driver and store energy in the springs, at other times the springs push the 
driver and the stored energy decreases. 

We will further require that only one block can move at a time. All 
others stick until the first one stops. Then a second block will be allowed 
to move if its failure criterion is violated and so on until the failure 
criterion is satisfied by all blocks. Then we will have a period of strain 
accumulation until the next event begins. Each event consists of several 
consecutive slips of different blocks. Let d~ '~ be the displacement of block 
i before event k and d~ 'j be the displacement of block i after the slip j in 
event k. The vector d k'j = (d~ 's, d~'J,..., d~4 s) gives us the state of the system 
after slip j in event k, and a trajectory in the displacement phase space is 
a piecewise linear curve with vertices d k'j. 

We next find the dependence of d k'j+l on d k'j. Let block m move 
in slip ( j + l )  of event k. Then d~'J+t=d~ 'j for iCrn. Denote 
tlm = ~ , i r  e,,id~ 'j and 2 = (Om/'~m) 1/2. The displacement of block m during 
sliding Xm(Z) satisfies 

, / . .2. .  + 0 ~ , x . . - , m  = 0 (2.13) 

and Xm(0) -  k,j --d, ,  . The solution of (2.13) is 

X,,,(z) = (Xm(O) - tlm/O,~) COS s + rl,,,/Om (2.14) 
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The velocity of slip 

Xm(t) = -- [X~.(0) -- qm/Om ] 2 sin 2t (2.15 ) 

will be equal to zero at the time r = ~/2 and the final displacement of block 
m is 

dkm ' j + l  = Xrn (7"C/A)  ~-  2tlm/O m - -  X m ( O  ) ~-  2tIm/.O m - -  dkm ' j  (2.16) 

The relation (2.16) defines the evolution of the model. But we can 
simplify the expressions if we consider the force f~ applied to the block i 
instead of the displacement (we assume all quantities are dimensionless) 

f~= O~y~- ~ c%.yj (2.17) 
j v a i  

Denote e~ j the sum of elastic forces applied to the block m from all springs 
after slip j in event k. Points e k'j are vertices of a trajectory in the elastic- 
force phase space. L e t / ~ , j =  2c@Oi; then from (2.16) and (2.17) we have in 
the case of slip of the block m 

k,j+l _ e ~ j  (2.18) e m ~-- 

e~'J+l=eki'J+#,,,ie~ j for i r  (2.19) 

The failure condition for the block m is 

L ~ f l i  (2.20) 

In order to describe the evolution of our model, we denote 
i , j  

f l k  - -  ek  
6i, j =  rain (2.21) 

k - - 1 , . . . , N  O~ii 

0,0 0,0 and the minimum value is on block mi, j. Let e I ..... e N be the initial elastic 
forces. If 6o, o > 0, the failure condition is not violated for any block and we 
have strain accumulation during the time equal to 5o, o/V. Then e~'~ 
e~176 ~kkSo, o, 61,o = 0, and the elastic force applied to block ml,o = m0,0 is 
fl.-,0. Then block rnl,o slips and from (2.18) we have e t'l = - e  1'~ and for , ml,o ml,0 

1,1 1,o . e 1'0 W e  f i n d  51 1 a n d  m l ,  1. k r  we have from (2.19) e k =e  k -~  ~ m l , o k  ml,0' 

If 51,1 > 0, the first event is over and we again have a time equal to 51,1/v 
for loading; but if 51,1..<0, then block m1,1 slips and ernl, 11'2 = _el,lml,1 and 

�9 e 1'1 Block m.,j slides for k r  we have from (2.19) e l '==e~ '1 +~ml.~k m~.~" 

during the ( j +  1)th slip in the nth event and e " J + l = - e ~  and for mn, j ,3 

k C m . , j  we have eT;J+l=eT. 'J+#.. .  ~e~,,(; The nth event ends when 
5.,j > 0. So if we denote s.  the number of ;lips inside of the nth event, we 
have 
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e o, 0 l o a d i n g  e 1 , 0  r a t , 0  e 1,1 m l ,  t m l , s  1 1 ) ) ) . . ,  ) 
s l i p  s l i p  s l i p  

e l , s  l l o a d i n g  ~ e2,O m2,0 ) e2 ,1  m2. l '~" . . .  tn2,s2-1 ), e 2 , S  2 

s l i p  s l i p  s l ip  

l o a d i n g  e3,O . .  en,  O ran,0 en, 1 ran, 1 mn, s n- 1 ~n, Sn 
s l ip  s l ip  s l i p  

W e  i n t r o d u c e  two  famil ies  o f  l inear  maps .  Sm : R u ~ R x c o r r e s p o n d s  

to  a slip o f  b lock  m a n d  Lm : R N --* R u c o r r e s p o n d s  to a s t ra in  a c c u m u l a -  

t ion  before  a slip of  b l o c k  m. W e  h a v e  the  m a p  

whe re  

S i n ( X 1  ..... X N )  = ( Y 1  . . . . .  Y n )  

= ~ - X ~ ,  if i = m  

Yi ( Xi + # m i X m ,  o t h e r w i s e  

a n d  the  m a p  

L ~ ( X 1 , . . . ,  z ~ X ) =  ( ~ g l - ~ f l r n - - X m  ..... X N " ~  ]~m--  X m )  

(2.22) 

(2.23) 

T h e n  

e.,j+ 1 = Sin~ ~(e~'/); 
T h e  J a c o b i a n  of  the  m a p  S.~ is 

e" + 1 ' ~  ...... (e ...... ) (2.24) 

Jac(S.,) = 

1 2 

1 1 0 

2 0 1 

m 0 0 

N 0 0 

a n d  the  J a c o b i a n  o f  the  m a p  L m is 

�9 . -  m - . .  N 

"'" #ml " "  0 \  

t 

" '"  /~m2 "'" 0 
�9 . . " . . . " 

. . . .  1 - . - 0  
�9 , . " . . . 

" '  /~mN " '"  1 

(2.25) 

1 

2 

Jac (Lm)  = - 
m 

N 

1 2 - ' -  m . - -  

/1 0 . . . .  1 . . .  

0 1 . . . .  1 . - .  
~ ' . .  : " . .  

0 - 0  . - .  0 - .-  
: ' . .  ~ " . .  

0 0 . . . .  1 --- 

N 

O~ 

0 

(2.26) 
0 

1 
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We now estimate the stability of our system to variations of the initial 
position. We have a trajectory e k'j and a variation of the initial position 
e ~176 = e ~ 1 7 6  A ~176 where A~176 N. Denote the difference between the two 
trajectories Ak'J=ek'J'--e~'J. We take A ~176 small enough so that the 
numbers mk, j are the same for both sequences. Then as Sm and Lm are 
linear from (2.24) it follows that 

Ak, g+ 1 = Sm~,j(ek, j ') _Smk ,  j(ek, j) = Jac(Smk,)(Ak, j) (2.27) 

and 

k,  Sk A k + 1,o = L,~k,,k(e~,,'~) _ Lmk,,k(ek,,~ ) = Jac(L,~k,~k)(A ) 

We denote by Ivl the length of the vector v e R u and define 

A(k, j )  = m a x  IAk'Jl/l~~176 
dO, OE RN 

(2.28) 

(2.29) 

A ( k ,  j )  gives us the maximum possible change of the difference between 
two close trajectories and 

2 = lim 2~, where 2k = (I/k) log A ( k ,  0) (2.30) 
k-+oo 

defines the Lyapunov exponent 2 for our model. We apply (2.30) to 
estimate the stability of different special cases of the general model. 

3. T W O - B L O C K  M O D E L  

The simplest example of the general model with N =  2 is shown in 
Fig. 2. We will assume symmetry everywhere except for the friction forces. 
Then 7 t = 7 2 = 1 ,  ~ n = ~ 2 2 = 1 ,  ~12=~, / /1=1, flz=fl; ~ is a stiffness 
parameter and the friction parameter fl is a measure of the symmetry; the 
system is symmetric if f l=  1. We have 0 1 = 0 2 = 0 =  1 + ~  and #1,2= 
2~/(~ + 1), so the relation between the displacements relative to the driver 
before and after the slip ( j +  1) inside sliding event k if it is a slip of 
block 1 is 

d~, j  + l = 2c~ d~,J/(1 + ~) - d f  , j  1 

d~ "+1  = d~,J (3.1) 

If the slip (j + 1) inside sliding event k is a slip of block 2, we have 

dk, j+ 1 = d~,j 
1 (3.2) 

dk,j+ 1 = 2adk,ff(1 + a) _ d~,j 2 
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Fig. 2. 

F1 

k12 F 

F2 

Illustration of the slider-block model with only two blocks. 

The failure criteria are 

(c~ + 1)dr ' j -  ~d2k'; >~ l (3.3) 

(~ + 1)d~ ' j -  o:d~ 'J >1 fi (3.4) 

These failure creteria give an area in the displacement phase space which 
is bordered by two straight lines given by the equalities in (3.3) and (3.4). 
An example is given in Fig. 3. These straight lines intersect at a point 
whose location is given by the root of system (2.5) with N =  2, 

7 + l + a f l  
al = (3.5) 

1 + 2 ~  

a2 - (3.6) 
1 +2c~ 

When f l= 1, as in Fig. 3, we have a~ = a 2 =  1. In the triangular region 
between the straight lines the blocks are stationary; outside this region at 
least one block violates the failure criteria and will slip. 

The expressions (2.18) and (2.19) for forces when block 1 slides are 

c k ,  j +  1 _ e  k 1 ~ 'J  

a:,j+ 1 = ezk4+ [2a/(a + 1)]e~ 'j e2 
(3.7) 

and when block 2 slides they are 

k,j+l = e~,j+ [2~/(c~ + 1)]e~ 'j e l  

ek, j +  1 __ck, j 
2 

(3.8) 



1160 Narkounskaia e t  al. 

C3 
i i t 

d1,1 d & ~  
d 1'~ 

Ln d 5'~ . V J . / A  
c5 d3, 2 ~ d ~ ( O  . .  

d 7,~ I 
C) d 1'3 d ~ d 6 , O  I 
C) ,45,3] ~ / I F / / / /  I d 1,2 U ' / L /  / . /~// d5,2 

uo d 3 / / / /  
C3 4 d~'3 
[ d 2 ' 1 ' ~ 2 , 0  

0 d~176 ~ / -  ~d1 '4  

: 9 =  
/ = 5 .0  

L,D 
I l I 

7 
- 1 , 0  - 0 . 5  0 . 0  0 . 5  1 .0  

X1 

Fig. 3, Phase portrait of the evolution into a periodic trajectory with c~ = 5 a n d  f i  = 1 .  The 
diagonal lines converginig on X 2 = X l = 1 in the X2-X 1 phase plane are the failure envelope 
given by (3.3) and (3.4). The trajectory begins with displacement d ~176 and evolves to the 
periodic trajectory d 6'~ --* d 6J --* d 7'0 ~ d TM ~ d 6'0. 

The failure criteria are 

e~'J>~ 1; e~'; >~/? (3.9) 

For  N = 2 we can write simple expressions for the dependence of  the 
forces after slip j inside sliding event k, e k'j, on the forces before sliding 
event k, e ~'~ Let ,9 be a real number  such that 0 < O < re/2 and cos 0 = 
e/(e + 1). Denote  

GA,(x, 0) = l-x sin nO + ~ sin(n + 1 )0] / s in  0 (3.10) 

Then if the first slip in the event k is the slip of block 1, we have @ o =  1 
and for even j 

e~ 4 = G  tek'~ O) (3.11) 1 , j  ~, 2 

e~ ' j  = - G  (e k, 0 0) (3.12) 1 , j - -  l k  2 

and for odd j 

e~ 'j G lek'~ 3) - -  1 , j - -  1 \  2 

ek2 ' i  G tek'~ 0) l , j k  2 

(3.13) 

(3.14) 
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If the first slip in the event k is the slip of block 2, we have e~ '~ = fi and for 
odd j 

e k, j ~ k 0 G~,j(e 2' ,0)  (3.15) 

~e ~'~ 0) (3.t6) ek2 " j =  - G 3 , j  1\ 2 ' 

and for even j 

tek'~ 0) (3.17) e k ' J - ~ - - G f l ,  j - l ~  2 , 

ek, J ~ k,O G~,j(e z , 0) (3.18) 

Expressions (3.11)-(3.18) can be proven using mathematical induction. 
Let m be the integer part of ~/0 (m > 1 as 0 < ~/2); then 

sin(m -- 1 ) 0 > 0; 

sin(m + 1 )0 < 0; 

sin mO > 0 

sin(m + 2)0 < 0 
(3.19) 

Thus from (3.11)-(3.18) it follows that the maximum number of slips inside 
a sliding event is not more than m + 1, so that we always have a finite 
number of slips inside the sliding event. If we assume that we do not have 
less than m + 2  slips inside a sliding event, we have from (3.9) and 

1(e2 , 0)  >/1 and 0) 1 (they sometimes (3.11)-(3.18) that Gp, j+ k,o k,0 GB, j(e2 , >1 
should be ~>fl). But it follows from (3.19) that Gt~,j+l(e~'~ for 

k.0 and k,0 k,0 positive e 2 G~,j(e 2 , 0 ) <  0 for negative e 2 , so we have a contra- 
diction. 

A typical phase portrait for a symmetrical example is given in Fig. 3 
with ~ = 5 and fl = 1. The sequence of slip events begins with the initial 
displacement d ~176 Both blocks stick and we have strain accumulation to 
point d 1'~ where the failure criterion (3.3) for block 1 is violated. Block 1 
slides and stops at point d 1' 1, but this point satisfies the failure criterion for 
block 2, (3.4), and it begins to slide. Block 2 stops at point d 1'2, but this 
point again violates the failure criterion for block 1. Block 1 slides and 
stops at point d ~'3, where the failure criterion for block 2 is violated and 
block 2 slides to point d ~'4. We then have a period of strain accumulation 
dl '4d 2'~ We next have a single-slip event d2'~ 2"~ with a slip of block 1. 
After loading d2'ld 3'~ we have a multiple-slip event which is started by 
block 2. We have two slips of block 2: d3'~ 3"1 and d3'2d3'3; and two slips 
of block 1: d3,1d 3,2 and d3'3d 3'4. After the strain accumulation d3'4d 4"~ we 
have a single block 2 slip d4'~ 4'1. After loading d4'ld 5'~ we again have a 
multiple-slip event consisting of two slips of block 1: dS'~ 5't and dS'2dS'3; 
and two slips of block 2: dS'ld 5'2 and dS'3dS'4. After the strain accumula- 
tion dS'4d 6'~ we have a single slip of block 1, d6'~ then loading d6' ld 7"~ 
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and a single slip of block 2, dV'~ 7'1. But after the strain accumulation we 
come to the same point d 6'~ and the last two events will repeat indefinitely. 
After an interval of rather complicated evolution we come to a periodic 
trajectory which consists only of single-slip events. 

It is also instructive to illustrate the behavior of the system using a 
Poincar6 map. For this purpose we will consider only sliding events 
(including multiple events) that begin with the slip of the first block. The 
nondimensional force e~ '~ applied to the first block when it initially slips is 
always equal to 1. So we take all k/such that e lkj'~ = 1. The behavior of the 
system can be characterized by the sequence of nondimensional forces 
applied to the second block fj  _ e  2 _  _ks,0 when the slip of the first block begins. 
Since the second block must be at or below the slip condition, we have 

~</L This sequence of values ~ defines a Poincar6 function and the 
iteration of this function determines the evolution of the system. 

We first consider the Poincar6 map for e = 5 and/~ = 1; it is given in 
Fig. 4. The dependence of f /+ l  on f j  is a rather complicated piecewise 
linear function. Also included in Fig. 4 is the diagonal line fj+ 1 = f j .  Inter- 
sections of the Poincar6 map with the diagonal line are the fixed points of 
the solution. It is seen that there are four unstable fixed points at 

o,1 

0 / 
1.0 

o 
d 

~D 

4_ 9 

7 
co 

7 

C,d 
I 
- 3 .0  -2 .0  - 1 . 0  0.0 1.0 

fj 

Fig. 4. Poincar6 m a p  for e = 5 and/~ = 1. The sequence of dimensionless forces f i  applied to 
the second block when slip of the first block begins is given. The dotted line illustrates the 
phase trajectory given in Fig. 3. 



Slider- Block Model 1163 

fj+ ~ = f j  = -1.5,  -0 .5 ,  -0 .17,  and 0.48; there is also an infinite set of fixed 
points in the range - 1  < f j+ l  = f j  < -0.6667; these are stable fixed points. 
The fixed point that the solution approaches in the steady state depends 
upon the initial values of the iteration. The same example which is shown 
in Fig. 3 in displacement phase space is given in Fig. 4 in the Poincar6 map. 
The initial force is e~'~ Then e ~ ' ~  and the next point is 
e~'~ -0.05. We skip e 3'~ and e 4'~ as  events 3 and 4 started from the slip 
of block 2, and for them e23'~ < 1 and e 4'~ < 1. The last point e 6'~ is in the 
infinite set of fixed points and from this point a periodic trajectory starts. 

For  the symmetric case fl = 1 we always have an infinite set of fixed 
points over the range - 1  <f :+~ = f j <  1-2c( (c~+ 1). If - l < f j = @ ~  

k, 1 ~ - - 1  1 -2e/(c~ + 1) and @ o =  1, block 1 slides and using (3.7) we have e 1 
and 

- 1  + 2e/(c~ + 1 )<e2  k'' = e~'~ + 2~/(c~+ 1)<  1 (3.20) 

k + l , O  1. The failure criteria are not violated and we have loading until e 2 = 
Then - 1 _k+ 1 0 e2 k,1 < %  ' = - < l - 2 a / ( c ~ + l ) < l .  Block2 slides and after it 
stops, from (3.8), we have ek2 +~'1= - 1  and e l  k+x ' l  = e  1 . + 1 ' ~  

Thus - 1 + 2 ~ / ( c ~ + l )  _k+11 < %  ' < 1 and again the failure criteria are not 
violated and we have the strain accumulation until e ~ + a ~  1 and from 
(3.20) it follows that 

~+zo k+1.1 ~k+l,o 2~/(0~+1) f j + l  = e 2  = - - e l  ~ - - e ' l  - -  

k, 1 - -  2~/(~ + 1 ) = e~ '~ = fj. 
~ g 2  

Thus we have periodic trajectories over the whole interval of fixed points. 
Note that for all the linear segments of the Poincar6 map we have 
dJ)+ ~/dfj >/1, so that if our initial condition fo lies outside the interval of 
fixed points, there will be a transient iteration before the trajectory lands 
on the interval of fixed points. The length of the fixed point interval 
decreases and the length of the transient increases with increasing c~. For 
the symmetric case we always have a periodic trajectory in the steady state, 
but the trajectory depends upon the initial conditions. 

The Poincar6 map for ~ = 0.2 and fi = 3 is given in Fig. 5. In general 
it can be shown that 

f j+ l  = f j +  2 + 2 cos 0 (3.21) 

for f] ~< fl - 2 - 2 cos 0. If f j  = e~ '~ after the slip of block 1 we have 

@ 1 =  - 1 ;  e2k'l = @ ~  cos 0 (3.22) 

822/67/5-6-21 
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Fig. 5. Poincar+ m a p  for e = 0.2 and  /~ = 3. The  do t ted  line illustrates the evolut ion of a 

trajectory from the initial value f0 = 0.8 to the periodic trajectory f4 ~ f5 ~ f6 ~ f4. 

Thus  e~ '1 < / 3 - 2  and we have strain accumula t ion  until bo th  forces 
increase by 2 and e ~ + l ' ~  1 and f j+  l = e 2 - k + l ' ~ 1 7 6  so 
(3.21) is true. As a result, the Poincar6 m a p  in Fig. 5 has unit slope for 
e2n ~< 2/3. 

If  can also be shown that  

f i+1 = f j -  ( / / -  1)(2 + 2 cos 0) (3.23) 

for /3 - 2 cos 0 - 2 + 2/3 cos 0 < f j  </3 - 2 cos 0. There  exists f j  which 
satisfies this inequali ty if, as in our  case, /3 < 1 + 1/~. After the slip of 
b lock 1 we again have (3.22) and /3 - 2 + 2/~ cos 0 < e~ '1 </3, but  now the 
next event  starts f rom b l o c k 2  because 2 - 2 / 3 c o s 0 < 2 .  So we have 

k+l,o e ~ + l . 0  e 2 ---=/3 and - - 1  + / 3 - f j - 2 c o s 0 <  1. After the slip of b l o c k 2  
we have e 2 -k+1 '1=- /3  and e l k + l ' l = - l + / 3 - f j - 2 c o s 0 + 2 / 3 c o s 0 .  The  

_k+2.o 1 and e2 k+2,~ next event starts f rom the slip of  b lock 1, so e~ = = 
- / 3  + 1 _k + 1,1, which gives us (3.23). So if/3 < 1 + 1/~ is an integer, we - - e "  1 

always have a periodic t ra jectory which starts f rom (3.23) and then (3.21) 
repeats  / 3 - 1  times and again  we have the whole interval of initial 
posit ions,  which gives us a periodic trajectory. 
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As a specific example, we take fo = e ~176 0.8 and the resulting itera- 
tions are given by the dotted line in Fig. 5. We obtain the sequence of 
points f ,  with 

f~ = 0.49 --+f2 = 2.82 --+f3 = -2 .2  --+f4 = 0.13 -+fs 

= 2.46 ~ f 6  = -2 .2  

We see that points f4, fs ,  and f6 form a periodic trajectory. The corre- 
sponding periodic trajectory phase portrait is shown in Fig. 6. Points d4,0, 
ds,o, and d6,0 in Fig. 6 correspond to the points f4, f5, and f6 in Fig. 5. The 
periodic trajectory starts from the point d 4'~ when block 1 slides and then 
stops at the point d 4'1. Then we have loading to the point d s'~ where again 
the first block begins to slide. Its slip terminates at d s'l and again we have 
loading until the point d 6'~ Again block 1 slides and stops at d 6'1. Then we 
have loading and now block 2 slides at the point d 7'~ The second block 
stops at d 7'1 and after loading we return to the initial point d 4'~ Note that 
(3.21) is applicable twice and (3.23) once in our periodic trajectory. If 
5/3 ~<~<8/3,  we always have periodic trajectories, so that again we have 
a cyclic evolution in the steady state and the trajectory depends upon the 
initial conditions. 

0 d 7 '0  

O / 
~_ , 

O 
/ 

O d4 

t'O 
I 

O 

: gd  
I 

O 

0~ 
1 

O 

/ s.o 
' 7 = 0 . 2  

0 

Lr~ I I I J I 

I -1 ,5  -1 .0  -0 .5  0.0 0.5 1.0 1.5 

• 

Fig. 6. Phase portrait of the periodic trajectory for e = 0.2 and fl = 3 corresponding to the 
evolution from fo = 0.8 given in Fig. 5. 
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We next consider the case in which the strengths of the driver and 
coupling springs are equal, c~ = 1 and 2 cos 0 = 1. For this case we can show 
that f j  +1 = ~ in the range /~ - 1 < ~ </3 if/? >/2 and that f j  +1 = f j  in the 
range 1 < f j < f l  i f /3<2 .  Again e~'~ 1 and f j = e ~ ' ~  After the slip of 

k,1 - 1  and k , l = f j + l > / ~ .  Now block2 slips and b lockl  we have e 1 = e 2 
k,2 - 1  + 1 + f j >  1 and ek2 '2 - f j -  1. The failure criterion for block 1 is e 1 ~ _~_ 

satisfied and after it slips e~'3= - f j  and e~'3= -1 .  The next event starts 
k+l,0 1 - -ek f3=f j< /L  Again we from block 1 and ekl +1'~ 1 and f ;+ l  =e2 = 

have an interval of fixed points. The Poincar6 map for ~ = 1 and/? = 1.3 is 
given in Fig. 7. We see that f j+ l  = f j  in the interval 1 < f j <  1,3. In this 
range of initial conditions we have periodic trajectories that depend on the 
initial conditions; an example with f0 = 1.1 is given in Fig. 8. The periodic 
trajectory starts from point d ~176 where block 1 slides and stops at point 
d ~ but this point satisfies the failure criterion for block 2 and it begins to 
slide. Block 2 stops at point d ~ but this point satisfies the failure criterion 
for block 1 and it begins to slide. The multiple-slip episode terminates at 
point d ~ and we have loading that returns us to point d ~176 

We next consider the interval I of values for f j  illustrated in Fig. 7. If 
f j  is within this interval, then the point f j+ l  must also lie within this 
interval. Because the slopes of the Poincar6 map within this region are 

o 
cq 

o 

o 

o 
c4 r 

I 
- 3 . 2  - 2 . 4  

I t 

= 1 . 0  
/3 = 1 . 5  

�9 

<- - i  

- 1 . 6  - 0 . 8  
fj 

I 

0.0 0.8 1.6 

Fig. 7. Poincar6 m a p  for c~ = 1 and fl = 1.3. Orbits  within the interval I are t rapped and the 
resulting phase portrai ts  are chaotic; an example is given in Fig. 9. 
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Fig. 8. Phase  por t ra i t  of a periodic trajectory with c~ = l, fl = 1.3, and  f0 = l .I .  

greater than unity, the singular points are unstable and we expect chaotic 
behavior. An example with fo = -0.8 is given in Fig. 9. For the parameter 
values ~ =  1 and ~ =  1.3 we have either chaotic behavior or periodic 
behavior, depending upon the initial conditions. 

We next illustrate an example in which the solution asymptotically 
approaches a limit cycle trajectory. The Poincar~ map for ~ = 3.5 and fl = 3 
is given in Fig. i0. We first consider initial values in the interval 
2.15 < f o  < 3 (fo = 3 is the maximum allowed value for/3=-3); we denote 
this interval as aobo in Fig. 10. After the first iteration we have 
-0 .15 < f t  <0.06 corresponding to the interval atb~ and after the second 
iteration we have 2.54 < f2  < 2.98 corresponding to the interval a262. Thus, 
after each two iterations the length of interval becomes less and asymptoti- 
cally we will have a point instead of the interval. The asymptotic cyclic 
trajectory is shown in Fig. 10 as the dotted line. It oscillates between the 
points e ~176 with fo =2.7 and e ~'~ with f l  = -0.013. Note that f2 = f o  and we 
have a period-two limit cycle. For any other initial conditions the trajec- 
tory will enter this region and will converge to the limit cycle. The limit 
cycle behavior in the phase plane is illustrated in Fig. 11. The failure of 
block 1 at point d ~176 in the phase portrait corresponds to point e ~176 in the 
Poincar6 map. This is a multiple failure with three failures of block 1, 
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Fig. 9. 
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Fig. 10. Poincar6  m a p  for ~ = 3.5 and  fl = 3. The  dot ted line cor responds  to the per iod- two 
limit cycle i l lustrated in Fig. 11. Trajector ies  for all initial values fo converge  to this limit cycle. 
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Fig. 11. 
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Phase portrait of a period-two limit cycle for c~ = 3.5 and/? = 3. Trajectories for all 
initial conditions converge on this limit cycle. 

d~176 ~ d~ ~ and d~ ~ and two failures of block 2, d~ ~ and 
d~ ~ After strain accumulation d~ 1'~ block 1 fails, dl"~ 1'1, and this 
corresponds to e 1'~ on  the Poincar6 map. After strain accumulation 
d ~' ~d 2'~ block 2 fails. This is a multiple failure with two failures of block 2, 
d2'~ 2'1 and d2"2d 2'3, and two failures of block 1, d2'ld 2'2 and d2 '3d  2'4. 

After strain accumulation d2'4d ~176 the period-two limit cycle repeats. 
Our last example is for ~ = 2 and fl = 3. The Poincar6 map for these 

parameter values is given in Fig. 12 and a phase portrait for f0 = 0.1 is 
given in Fig. 13. The behavior in this case is clearly chaotic. With asym- 
metry the system exhibits a great variety of behavior. For the last example 
the trajectories are chaotic for all initial conditions. We have also 
illustrated examples in which the behavior is chaotic for some initial condi- 
tions and evolves into periodic orbits for other initial conditions and limit- 
cycle behavior that is independent of initial conditions. 

We next determine the Lyapunov exponent for several cases. We can 
define the Lyapunov exponent 2 not only from (2.30), but also using the 
Poincar6 map 

~ j k l  d 4 + l  2 =  lira log (3.24) 
k ~ a o  = d f j  
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for any trajectory. In the case e = 2 and /~ = 3 we have Idfj+ 1/dfj[ ~> 2 for 
f j >  - 1 / 3 .  We will p rove  this by using the fact that  a force on a block 
before an event is a linear function of the force before the previous event 
and so the dependence of f j + l  on f j  is the compos i t ion  of the linear 
functions and [dfj+l/dfj[ is equal  to a p roduc t  of derivatives of these 
functions. With  e ~ ' ~  - 1 / 3 ,  let l be a number  such that  event l is the 
next after event k which starts f rom block 1. Then f j+  i = e~~ e~ '~ = elz, O = 1. 
No te  that  e k'l - f ~  2 - j + 4/3 > 1. We consider two cases: 

1. f j <  5/3. Then e w  3 and the (k + 1) event starts f rom block 2; 
k + 1,o is a linear function of f j ,  e,-k + 1.o = 2/3 - - f j  = a~f j  + bk < 1 e l  

k + l , o >  --1. and l>k.  Note  that  in this case [ a t [  = 1, but  e 1 

2. ~ > 5 / 3 .  Then e~'1~>3 and b l o c k 2  slides. Then @ 2 = - f j - 4 / 3  
and e~ ' ~ = ( 4 / 3 ) f j + 7 / 9 > 1 ;  so now b l o c k l  slides and elk.3__ 
( - 4 / 3 ) f j -  7/9 < - 1 9 / 9 ;  e~ "3 --- ( 7 / 9 ) f j . -  8/27 < 3. N o w  the sliding 

k + l , 0  event is over  and the next event starts f rom block 2 and  e~ - 
k + l , 0  ( - 1 9 / 9 ) f j + 6 8 / 2 7 <  1. Thus  in this case also l > k  and e I = 

a~fj+bk with lak[ >~2. 

Let k < m < l ;  then e ~ " ~  and e T ' ~  1, as event rn starts f rom 
m+l"~176 +b m and block 2. We now prove  that  for m < l -  1 we have e 

for r e = l - 1  we have _lo _ ^ too_  e~ =u,~e 1' -vbm with laml) l. For  f j < 5 / 3  when 
la~[--- 1 we have lak+l[ ~>2 and for ~ > 5 / 3  we have ]akl 1>2, so that  

= I-[ [a~[ ~> 2 (3.25) 
dfJ i=k 

because in the produc t  all terms are not  less than  1 and at least one term 
is greater  than  2. We have e T " =  e T ' ~  4 and e~ ' I =  - 3 .  N o w  we have two 
different cases: 

r e + l , 0  
l. e~ ' ~  - 3 .  When  event rn is over, for m < l -  1 we have e 1 - 

re+l ,0= _ 6 _ e T . 0 ;  in any case 10+e~"~ for r e = l - - 1  we have e 2 
1am[ = 1, but  this s i tuat ion is possible only for fj~> 5/3. 

2. e T ' ~  (this is the case for ~ < 5 / 3 ) .  Then block 1 slides and 
e ~ ' , l = - 4 - e T . ~  e ~ , l = ( 4 / 3 ) e ~ " ~  And again we have two 
different cases. 

2.1. e ~ ' 1 < 3 .  When  event m is over, for r e < l - 1  we have 
r e + l , 0  elm+l,o = ( - 7 / 3 ) e ~ " ~  10/3 and for m = l - 1  we have e 2 = 

(7/3)e~"~ + 22/3, so in any  case [am] > 2. 

m, 1 2.2. e 2 ~> 3. When  block 2 slides, e~ ' 2 =  (7/9)e~ ' ' ~  < 1 
m,2 __ e 2 - ( - 4 / 3 ) e ~ " ~  Thus  now event m is over  and for 



1172 Narkounskaia e t  al. 

m + l ' ~  (19 /9 )e~ '~  and for m = l -  1 we r n < l - 1  we h a v e e  1 
have e ~' + 1,o = ( _ 19/9) e ~"~ _ 4/9, so again in any case I am [ > 2 and 
(55) is proven. 

No te  that  ] ~ + 1 1 < ( l + 3 ) / s i n 0 = 1 2 / x / - 5 < 6  for any f j > - l / 3 ,  
because in (3.11)-(3.18) x < 1 and fl < 3 or x < 3 or fi < 1. Thus f j+ 1> - 6  
and if f J ' + l  < - 1 / 3  and f j+2 = f j + l  + 10/3 < - 1 / 3 ,  then f j+2 = 
f j + l +  20/3 > - 1 / 3 ,  so at least 1/3 of all terms in the sum on the right side 
of (3.24) are not  less than log 2 and other  terms are nonnegative: 

1 ~ log ld f j+  1 > l  log 2 
j = l  

Thus, ), >~ �89 log 2 for ~ = 2 and fl = 3 and we have a positive Lyapunov  
exponent  in this case. 

We now apply (2.30) to our  two-block model  and determine what  this 
technique gives us in a case when we know that  the Lyapunov  exponent  is 
positive. We have from (2.25) and (2,26) 

�9 Jac(S2) = Jac.S1.  = 4 ' 

g 

J a c ( L 1 ) = ( _ 0 1  01); J a c ( L 2 ) =  (10 -10)  

And from (2�9 2 = lim k ~ ~ 2k, where 

(3�9 

2k=(1/k)logA(k,O)=(1/k)log max IAk'~176176 (3�9 
A0,O ~ R2 

In the case of the two-block model  we could use (3�9 but  in the two- 
dimensional  case it is very difficult to find a maximum. We will not  take 
the max imum in (3.27), but  we use 

A(k, j )  = IAk'J[/IA~176 I (3�9 

For  arbi t rary LA~176 I this gives us a lower estimate for 2k. The dependence 
of 2k = ( l /k )  log A(k, 0) on k is given in Fig. 14 for the periodic case ~ = 20 
and fl --- 1 and in Fig. 15 for the chaotic case ~ = 2 and fl = 3. We can see 
that  in the periodic case we have positive values of 2k until the system 
enters the periodic t rajectory and then 2 k tends to 0, so that 2 = 0. In the 
chaotic case the Lyapunov  exponent  is 2 = 0.45 and is positive as expected�9 

It is of interest to discuss whether  the restriction that  only one block 
slips at once has a major  influence on the behavior  of the dynamical  
system�9 This restriction allows us to reduce the problem to a solution valid 
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for any value of the dynamic friction, including no dynamic friction, in 
which case no energy is dissipated. The results obtained here are very 
similar to those obtained by Huang and Turcotte (4) in which both blocks 
were allowed to slide at once. In both cases choatic behavior is found for 
a range of parameter values. 

4. T W O - D I M E N S I O N A L  M O D E L  

We will next apply our model to the behavior of large arrays of slider 
blocks. We consider rectangular arrays made up of N =  n . m  blocks; the 
numbering of the blocks is illustrated in Fig. 16. All blocks are connected 
to a constant-velocity driver and to adjacent blocks by springs; the blocks 
are constrained to move only in the x direction. We assume complete sym- 
metry and take 7,.= 1, c~ii= 1, /?i= 1, and c~=  c~ for neighboring blocks i 
and j and c o = 0  in other cases. This model is essentially a cellular 
automaton. A slip occurs when the failure criterion (2.3) is violated. The 
failure of the first block may transfer sufficient force to the adjacent blocks, 
through the connector springs, to cause one or more of these blocks to fail. 

+ 

Fig. 16. Illustration of a two-dimensional n • m array of slider blocks. All blocks are 
connected to a constant driver and to adjacent blocks by springs; the blocks are constrained 
to move in the x direction. 
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All blocks for which the failure condition is violated are allowed to fail 
sequentially. The sequence is arbitrary but the evolution of the system is 
not sensitive to the choice. 

The boundary conditions on the sides of the array are taken to 
be either free or periodic. Most of our studies have utilized free surface 
boundary conbditions. For  free surface boundary conditions, 0i = ! + 4a if 
the block is not on the boundary (if i =  kn + r with integer k and r and 
0 ~ r < n, then r should not be equal to 0 or 1); 0 i = 1 + 2c~ if the block is 
in the corner [ i =  1; i = n ;  i =  ( m - l ) n +  1; i = m n ] ;  0i, j =  1 +3c~ in other 
cases and/zi, j = 2e/0i for neighboring blocks i and j and /~i,j = 0 in other 
cases. 

We now define the evolution of the model. Let e~ 'j be the force on 
block i after the slip j in event k and mk, j be the number of the block which 
slides during slip j + 1 in event k, i.e., k.j _ k j emk, i - -  m a x i =  i,..., N e i '  . Then 

t 
--eki j - 1  if i = mk, j _  l 
k,j-- I 0 k,j--1 ef, j = e i +2cr memk, j_l if blocks iandmk,  j _ l  (4.1) 

are neighbors 

ek, j 1 otherwise 

If 

e~;~>~ 1 (4.2) 

then block rnk. j slides. If (4.2) is not true, the sliding event is over and we 
have uniform loading until the failure criterion is again violated. Denote 
6k, j = mini= 1,...,u 1 -- @ i  = 1 -- e~;~j. If  the failure criteria are not violated, 

e~i + l'~ = e~i'J + 6<j  (4.3) 

and mk + l,o = m~,j .  
The size of an event is given by the number of boxes Nf  that par- 

ticipate in the event. All results presented here are taken after the system 
becomes statistically stationary. The statistical behavior of the system does 
not depend on the initial state except for a few special cases. Frequency-  
size statistics for cr = 1 and square arrays (m = n) of varying size (n = 20, 30, 
40, 50) are given in Fig. 17. For  smaller events (1 < N I <  10) we have a 
power-law (fractal) dependence of l o g ( N / N o )  on Nj. ,  where N is the num- 
ber of events with N f  blocks participating and No is the total number of 
events studied. In out case No = 10,000. In this range we find N ~ N f l s 7 ;  

the corresponding dashed line is given in Fig. 17. There are relatively fewer 
large events ( N f >  10). We see that the probability of an event of a given 
size does not appear  to depend on the size of the array if the array is 
sufficiently large. 
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Fig. 17. Dependence of the fraction of events N/No on size Ny for ~ = 1 and several values 
of n. The dashed line is N ~ N f  1.5v. 

Frequency-size results for e = 5 are given in Fig. 18. Again we have a 
power-law dependence for smaller events ( l < N s < 2 0 ) ,  with relatively 
fewer large events. The smaller events correlate with the relation 
N ~ N 7 1 2 1 .  Frequency-size results for ~ =  50 are given in Fig. 19. In this 
case the system is considerably stiffer and the relative number of large 
events is higher. We note an anomalously large number of catastrophic 
events in which all elements fail. The spike at N I = 4 0 0  (log Nf=2 .60)  
corresponds to catastrophic events with n = 20 and the spike at N f =  900 
(log Nf=2 .95)  corresponds to catastrophic events with n=30 .  There 
are relatively few catastrophic events with n = 4 0  and 50. Except for 
the catastrophic events, the correlation with the power-law relation 
N ~ N f  1.26 is excellent. 

We will now find the Lyapunov exponent using (2.30). Let e ~176 be the 
0,0' 0,0 initial forces and e i = e i + A i a random variation of the initial value, so 

we have two trajectories in the force phase space; A =  (Ax,  A=,..., AN) is a 
vector-column of the initial difference between two trajectories and its 
length [AI is the initial distance between two trajectories. Denote by 

Pk = Jac(Lmk, sk) 

the matrix of partial derivatives of the loading map introduced in (2.23), 
where sk is the number of slips inside event k, and by 

Qk,j = Jac(Smk, j) 
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the matrix of partial derivatives of the slip map introduced in (2.22), After 
the strain accumulation we have, using (2.28), the following distance 
between our two trajectories: 

le 1'~ --el'~ = [AI'~ = IeoAI (4.4) 

so the distance between the trajectories increases in A(0)= IPoAI/IAI times. 
After the first slip in the first event we have, using (2.28) and (2.27), 

]e l 'r  - e  t'l] = IAX'lj = IQ~,~AI'~ = IQ~,lPoA) (4.5) 

so the distance between the trajectories increases in IQI, IPoAI/IAI times. 
After the first event 

[e ~''i -e~'"[--IA~'sl[--IOl,,~ " '  Q~,~PoAI (4.6) 

Before the second event the distance between trajectories increases in 

A(1)= he2'~176 =P~Q~,,~ ... QI,~PoAI/IA[ (4.7) 

times and so on. Before event k +  1 the distance between trajectories 
becomes in A(k) times more than the initial distance, where 

A ( k ) =  lek+l'~ ek+l'~ 

= IPkQk.sk'"Qk, lPkQk-~,,k ~ ""Q~,,, ""Q~,~PoAI/IAI (4.8) 

To find the Lyapunov exponent, we should find the maximum possible 
value of A(k) over all A e R  N [see (2.29) and (2.30)]; it gives us the 
maximum possible value of the ratio of the distance between two close 
trajectories before event k + I and the initial distance over all possible pairs 
of close trajectories. We do not obtain the maximum for different A, as it 
is extremely difficult for large arrays (the dimension of the phase space is 
too large), but take arbitrary A. Then A(k) gives us the increase of the dis- 
tance between two arbitrary trajectories, which is less than the maximum 
possible value. We define y log2k= (1/k)logA(k). The limit of 2 k as 
k--, 0o gives us a lower bound for the Lyapunov exponent. 

The dependence of ;~ on k for periodic boundary conditions, e = 1.4 
and n---10, is given in Fig. 20. It is similar to Fig. 17. With periodic 
boundary conditions there is a region in phase space where we have 
periodic solutions. The periodic trajectory consists of single-slip events and 
all blocks slide consecutively in some order as in the symmetric case/~ = 1 
for the two-block model. There is no such solution for free boundary 
conditions. The size of the periodic evolution region decreases with 
increasing ~. Just as in the case of the two-block model with 13 = 1 the 
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Fig. 22. Dependence of 21o4 on c~ for several values of n. 

evolution is chaotic until the trajectory intersects the periodic region. 
Intervals of chaotic behavior can be quite large for large numbers of blocks 
and large values of e; it can be more than 100,000 steps (see Fig. 20). In 
this case )-k approaches 0 as k--* oe and the Lyapunov exponent is equal 
to 0. 

The dependence of 2k on k for free boundary conditions, e = 5, and 
different sizes of the lattice (n =20 ,  30, 40, 50) is given in Fig. 21. We 
see that we have positive Lyapunov exponents and they decrease with 
increasing lattice size. 

The dependence of 21o,ooo on ~ different lattice sizes is given in Fig. 22. 
We can see that the Lyapunov exponent linearly increases with c~, and so 
with increasing stiffness of our system it becomes more chaotic. 

It is of interest to compare our results in which only one block is 
allowed to slide at one time with previous results in which large numbers 
of blocks are allowed to slide simultaneously. (s) The statistical behavior 
seems to be quite similar as well as the transition to the behavior with the 
slip of all blocks when the system becomes stiff. 

5. D I S C U S S I O N S  A N D  C O N C L U S I O N S  

In this paper we have considered a slider-block model that strongly 
resembles a cellular automaton. We only allow one block to slip at a time 
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and consider only nearest neighbor interactions. Both low-order and high- 
order versions give interesting dynamical systems behavior. 

In order to examine the low-order behavior of the system, we consider 
a pair of slider blocks connected to each other and to a constant-velocity 
driver with springs. The system is fully deterministic and an analytic 
expression can be written for the motion of each slider block. The termina- 
tion of each slip is also deterministic since it occurs when the velocity of the 
block is zero. Each slip has a "memory" of its initial conditions; this is a 
necessary condition for chaotic behavior. Once the system has been set in 
motion no stochastic or noise components are introduced. 

For  a symmetric pair of slider blocks we always have periodic 
behavior, but the trajectory depends upon the initial conditions. If the 
system is asymmetric, a greater variety of behavior is found. For  some 
parameter values the system behaves chaotically for all initial conditions. 
For  other parameter values the behavior is chaotic for some initial condi- 
tions and evolves into periodic behavior for other initial conditions. For  
some parameter values the system evolves into a limit-cycle behavior that 
is independent of initial conditions. We have shown that the Lyapunov 
exponent is positive for the regime of chaotic behavior. The behavior is 
essentially similar to that obtained when both blocks are allowed to slide 
at once. (4) 

In order to examine the behavior of high-order systems, we consider 
a square array composed of N =  n 2 blocks. We assume complete symmetry 
so that the only parameters are the ratio of connecter spring constant to 
driver spring constant e and the array size n. This model is essentially a 
cellular automaton. The driver is allowed to move until the stability 
criterion on a single block is violated. This block undergoes simple 
harmonic motion and sticks when its velocity is first zero. The stored 
elastic energy in the driver spring is partially transferred to the adjacent 
blocks. If this transfer induces failures in one or more of the adjacent 
blocks, these are allowed to slip one at a time. Additional slips are allowed 
to occur until all blocks are stable. 

The size of the slip event is specified by the number of boxes Nf that 
slip. Frequency-size statistics are obtained for a number of parameter 
values. In all cases we observe a power-law (fractal) dependence of number 
on size for the smaller events. If c~ is smaller than n, we find relatively few 
large events; the number of large events falls below the power-law correla- 
tion for small events. If c~ is larger than n, the system is relatively stiff and 
we find a relatively large number of catastrophic events that include all 
blocks. In all examples studied we have found positive Lyapunov 
exponents. We find that the exponent decreases toward zero for increasing 
size of the array n and increases for increasing stiffness (large ~). 
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Applications of low-order systems that exhibit deterministic chaos 
have been limited. However, a variety of problems are directly applicable 
to higher-order systems. One of these is distributed seismicity. The original 
studies of slider-block systems (3) were motivated by the desire to under- 
stand earthquakes. Probably the most universal feature of earthquakes is 
that they satisfy Gutenberg-Richter frequency-magnitude statistics. Aki/9) 
has shown that the number of earthquakes with a rupture area greater than 
a specified value has a power-law dependence on the area. Within observa- 
tional errors the fractal dimension is nearly always in the range 1.6 < D < 2. 

Because of this dependence a number of authors (6'1~ have suggested 
that distributed seismicity is an example of self-organized criticality. There 
is a reasonable analog between the slip events in our model and earth- 
quakes. The slip of the block over the surface is analogous to the 
displacements on a fault during an earthquake. The energy stored in the 
driver springs is analogous to the elastic energy stored in the rocks 
adjacent to a fault. This energy fluctuates as slip events (earthquakes) 
occur. 

Keilis-Borok (12) has utilized pattern-recognition algorithms in succes- 
fully predicting earthquakes, including the 1988 Armenian and 1989 Loma 
Prieta earthquakes. The pattern recognition included seismic quiescence, 
increases in the clustering of earthquakes, and changes in aftershock 
statistics. Apparently there are systematic changes in the statistics of the 
smaller earthquakes prior to the occurrence of a large earthquake. These 
changes appear to occur over distances that are relatively large compared 
with the rupture area of the large earthquake. One objective of our studies 
of analog systems such as that given in this paper is to search for precur- 
sory statistical phenomena. 
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